All test conditions are at 25°C. The figures are identical for WAF(D)150-24S12W.

Efficiency versus Output Load

Power Dissipation versus Output Load

Efficiency versus Input Voltage. Full Load

Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, $V_{in} = V_{in(nom)}$ (The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U.)

Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, $V_{in} = V_{in(nom)}$ (The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-24S12W.

- **Typical Output Ripple and Noise**
 - $V_{\text{in}} = V_{\text{in(nom)}}$, Full Load

- **Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load**, $V_{\text{in}} = V_{\text{in(nom)}}$

- **Typical Input Start-Up and Output Rise Characteristic**
 - $V_{\text{in}} = V_{\text{in(nom)}}$, Full Load

- **Using ON/OFF Voltage Start-Up and Vo Rise Characteristic**
 - $V_{\text{in}} = V_{\text{in(nom)}}$, Full Load
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-24S15W

Efficiency versus Output Load

Power Dissipation versus Output Load

Efficiency versus Input Voltage. Full Load

Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, Vin = Vin(nom) (The base-plate dimension is 19” * 3.5” * 0.063”. The height is EIA standard 2U.)

Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, Vin = Vin(nom) (The base-plate dimension is 19” * 3.5” * 0.063”. The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-24S15W

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from
100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-24S24W.
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-24S24W

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-24S28W.

- Efficiency versus Output Load
- Power Dissipation versus Output Load
- Efficiency versus Input Voltage. Full Load
- Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, $V_{in} = V_{in(nom)}$ (The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U.)
- Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, $V_{in} = V_{in(nom)}$ (The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-24S28W

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-24S48W.

Efficiency versus Output Load

Power Dissipation versus Output Load

Efficiency versus Input Voltage. Full Load

Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, Vin = Vin(nom)
(The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U.)

Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, Vin = Vin(nom)
(The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
All test conditions are at 25°C. The figures are identical for WAF(D)150-24S48W.
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-48S12W

Efficiency versus Output Load

Power Dissipation versus Output Load

Efficiency versus Input Voltage. Full Load

Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, Vin = Vin(nom)
(The base-plate dimension is 19” * 3.5” * 0.063”. The height is EIA standard 2U.)

Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, Vin = Vin(nom)
(The base-plate dimension is 19” * 3.5” * 0.063”. The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
All test conditions are at 25°C. The figures are identical for WAF(D)150-48S12W.

Typical Output Ripple and Noise. Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic. Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic. Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-48S15W.

Efficiency versus Output Load

Power Dissipation versus Output Load

Efficiency versus Input Voltage. Full Load

Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, \(\text{Vin} = \text{Vin(nom)} \).

The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U.

Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, \(\text{Vin} = \text{Vin(nom)} \).

(The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-48S15W

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-48S24W.

Efficiency versus Output Load

Power Dissipation versus Output Load

Efficiency versus Input Voltage. Full Load

Derating Output Load versus Ambient Temperature with iron base-plate and Airflow. Vin = Vin(nom)
(The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U.)

Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow. Vin = Vin(nom)
(The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-48S24W

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-48S28W.

- **Efficiency versus Output Load**
- **Power Dissipation versus Output Load**
- **Efficiency versus Input Voltage. Full Load**
- **Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, \(V_{in} = V_{in(nom)} \) (The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U.)
- **Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, \(V_{in} = V_{in(nom)} \) (The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-48S28W

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-48S48W.

Efficiency versus Output Load

Power Dissipation versus Output Load

Efficiency versus Input Voltage. Full Load

Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, $V_{in} = V_{in(nom)}$.
(The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U.)

Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, $V_{in} = V_{in(nom)}$.
(The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-48S48W.

- Typical Output Ripple and Noise.
 $V_{\text{in}} = V_{\text{in(nom)}}, \text{Full Load}$

- Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, $V_{\text{in}} = V_{\text{in(nom)}}$

- Typical Input Start-Up and Output Rise Characteristic
 $V_{\text{in}} = V_{\text{in(nom)}}, \text{Full Load}$

- Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
 $V_{\text{in}} = V_{\text{in(nom)}}, \text{Full Load}$
All test conditions are at 25°C. The figures are identical for WAF(D)150-110S12W.
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-110S12W.

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-110S15W

- **Efficiency versus Output Load**
 - Efficiency (%)
 - Power Dissipation (W)
 - Efficiency versus Input Voltage. Full Load
 - Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, $V_{in} = V_{in\text{(nom)}}$
 - The base-plate dimension is 19” * 3.5” * 0.063”.
 - The height is EIA standard 2U.

- **Derating Output Load Versus Ambient Temperature**
 - with iron base-plate, Heat-sink and Airflow, $V_{in} = V_{in\text{(nom)}}$
 - (The base-plate dimension is 19” * 3.5” * 0.063”. The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
All test conditions are at 25°C. The figures are identical for WAF(D)150-110S15W.
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-110S24W.

- Efficiency versus Output Load
- Power Dissipation versus Output Load
- Efficiency versus Input Voltage. Full Load
- Derating Output Load versus Ambient Temperature with iron base-plate and Airflow, \(V_{in} = V_{in(nom)} \)
 (The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U.)

- Derating Output Load Versus Ambient Temperature with iron base-plate, Heat-sink and Airflow, \(V_{in} = V_{in(nom)} \)
 (The base-plate dimension is 19" * 3.5" * 0.063". The height is EIA standard 2U. Heat-sink is optional and P/N: 7G-0058A-F.)
All test conditions are at 25°C. The figures are identical for WAF(D)150-110S24W.

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-110S28W.
Characteristic Curves (Continued)

All test conditions are at 25°C. The figures are identical for WAF(D)150-110S28W

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load
All test conditions are at 25°C. The figures are identical for WAF(D)150-110S48W.
All test conditions are at 25°C. The figures are identical for WAF(D)150-110S48W.

Typical Output Ripple and Noise.
Vin = Vin(nom), Full Load

Transient Response to Dynamic Load Change from 100% to 75% to 100% of Full Load, Vin = Vin(nom)

Typical Input Start-Up and Output Rise Characteristic
Vin = Vin(nom), Full Load

Using ON/OFF Voltage Start-Up and Vo Rise Characteristic
Vin = Vin(nom), Full Load